数学の入試問題を解けるようになるために必要な過程と、使用参考書例は以下の通りです。 (1)教科書レベル A.「教科書」 B.「これでわかる」(文英堂) C.「理解しやすい」(文英堂) D.「白チャート」(数研出版) Bは教科書が分かりづらい人、または、これまでサボっていて、慌てて教科書レベルをやり直そうとしている人向け。 Cは将来難関大学を狙っている1、2年生の先取り学習に適しています。 この他、いわゆる「講義系」と呼ばれる各種シリーズもあります。 (2)入試基礎固めレベル A.「チャート」シリーズ(数研出版) B.「ニューアクション」シリーズ(東京書籍) C.「1対1対応の演習」(東京出版) D.「標準問題精講」(旺文社) いわゆる「網羅系」と呼ばれる類の本をやります。 基礎から入試に向けてじっくり実力養成したい人はAかBをやればよろしい。チャートの色別評価などは別項を参照。 学校の授業を真面目に取り組み、「4STEP」や「クリアー」などの教科書傍用問題集を定期テストに合わせて真面目に 隅々までやってきた人は、CかDをやるといいでしょう。その場合、傍用問題集の中で忘れている部分がないように復習してから 取りかかると効果的。 これらの本は1シリーズだけやれば十分であって、「黄チャート→青チャート」のように"ステップアップ"していく類のものではないので、注意。 (3)入試標準演習(おおむね下に行くほどレベルが高い) A.「チェック&リピート」(Z会出版) B.「チョイス新標準問題集」(河合出版) C.「良問プラチカ」(河合出版) D.「新数学スタンダード演習」(東京出版) E.「理系数学入試の核心・標準編」(Z会出版) F.「月刊『大学への数学』スタンダード演習」(東京出版) G.「入試頻出これだけ70」(数研出版) H.「新こだわって!国公立ニ次対策問題集」(河合出版) I.「数学1A2B問題総演習」(学研) J.「数学実戦演習」(駿台文庫) 入試標準レベルの問題を「自力で解く」という練習をします。 AとBは比較的易しいので、あまり自信のない人の復習用に。 網羅系参考書をしっかりやった人ならCかDかEをやればよろしい。 網羅系参考書で学んだ知識をフルに使って、できる限り自分で解き進めましょう。 ただし、10分〜15分程度粘っても解き方を思いつかない場合は、解答を読んでかまいません。 もちろん、できなかった問題は復習と反省を忘れずに。 もしこのレベルの本をやっていて、ちっとも自分で解けない、というようだと、網羅系参考書の解法知識が身についていないので、 そっちに戻ってやり直した方が得策でしょう。 (別の言い方をすれば、チャートが身についていない人がプラチカをやっても、やっぱり身につかないまま終わるということです。 頭の使い方を修正するのが先です。) 中堅私立・地方国公立くらいまでなら、このレベルを徹底的にやりこむことが最も重要です。 上位大学でも文系であれば、このレベルが最終目標です。 したがって、この段階では1冊に絞らなくとも、必要に応じて複数の本を選んでやってもいいでしょう。 (4)上級解法集 A.「微積分基礎の極意」(東京出版) B.「解法の探求2」(東京出版) C.「マスターオブ整数」(東京出版) D.「数学ショートプログラム」(東京出版) E.「解法の探求確率」(東京出版) F.「解法の突破口」(東京出版) 難関大理系志望者や、医学部志望者などは、これらの本で高度な知識やテクニックを学ぶといいでしょう。 一般的な基準からすれば極めてレベルが高い本ばかりなので、(3)までのプロセスをおろそかにしてこれらの本だけをやっても 実力はつかないので注意しましょう。 (5)入試発展演習 A.「やさしい理系数学」(河合出版) B.「月刊『大学への数学』日日の演習など」(東京出版) C.「理系標準問題集・数学」(駿台文庫) D.「大学入試攻略数学問題集」(河合出版) E.「ハイレベル理系数学」(河合出版) F.「新数学演習」(東京出版) G.「理系数学入試の核心・難関大編」(Z会出版) H.「チャート式数学難問集100」(数研出版) I.「最高峰の数学へチャレンジ」(駿台文庫) 難関大理系志望者・医学部志望者などで、数学の実力に磨きをかけたい人向けの本です。 A.「やさ理」E.「ハイ理」F.「新数演」あたりは、上級解法集としての色彩も強いので、 「演習」というよりは「高度な解法を身につける」という用途にも適しています。 C.「理標」G.「核心」も重要解法をひと通り学べます。 BやDは最新の入試問題のみで構成されているので、自分の力を試しながら磨いていく演習に最適です。 学習法テンプレ案 3.標準的な学習プラン よくある質問 チャートシリーズの色別特徴 学習法・上級編 Q.「頑張って数学やってきたのに、模試の偏差値が上がりません。参考書を替えた方がいいのでしょうか」 その他のよくある質問(暫定版) 難易度ランク 新課程版参考書の難易度表 参考書 数学の勉強の仕方 トップ